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ABSTRACT 

Because of its abilities to produce trustworthy, ultra-low power circuits, reversible logic has recently attracted a 

lot of attention in the computer community. For instance, reversible circuits are essential for quantum 

computing. The study of reversible circuits is based on constructing productive adders since expansion is a key 

duty. In situations when augmentations and duplications are excessive, Residue Number Systems (RNS) has 

been a tremendous benefit for providing parallel and flaw-tolerant executions of calculations. The effectiveness 

of applications based on the residue number system depends heavily on modular adders. The majority of the 

work that has been published so far has only addressed modulo (2n 1) adders or adders that are modulo-specific. 

Modulo-generic adders have received little attention. 

This work presents new designs for modulo (2n±K) adders, where K is any integer in the range of 3 ≤K< 2n-1. 

The proposed structure merges two binary adder structures and maximizes sharing of components, wherever 

possible. This merger permits shorter cell- interconnections, which results in space wastage reduction. 

Additionally, tristate- based multiplexers (MUXs) are used in lieu of the more demanding gate-based MUX’s. In 

our design model, we propose the mix of RNS and reversible logic. The parallelism of RNS is utilized to build 

the execution of reversible computational circuits ensuring the correct design for power optimization. 

 

INTRODUCTION: 

There is no weighting in the residue number system (RNS). The foundation of this representation is the use of 

moduli, or substantially prime positive integers, to express any number. The dynamic range in which each 

integer inside this range is uniquely represented is defined by the sum of all moduli [1]. Each modulus operates 

independently of the others when performing additions, subtractions, and multiplications [1]. A channel is the 

data conduit where calculations related to any modulus are performed. There are L parallel channels for a L 

moduli RNS representation. Any computationally intensive arithmetic applications that rely primarily on the 

aforementioned operations may be completed in a significant amount less time thanks to the relatively 

independent and parallel channels. When a certain dynamic range is specified, the level of parallelism achieved 

is higher if the number of moduli L is increased. This implies dividing the total number of bits of a dynamic 

range over more channels, thus, having shorter word-lengths for each channel, where a shorter word-length can 

be processed faster than a longer one [1]. The level of parallelism achieved using three- moduli sets proved to 

be reasonable for some digital signal processing (DSP) applications. Other DSP and cryptography applications 

require higher levels that cannot be attained using three-moduli sets [1– 6].When considering the number of 

moduli, three and four moduli sets have been heavily researched [1, 7–11 ]. To achieve higher levels of 

parallelism, five-moduli sets have been introduced such as{22n, 2n− 3, 2n+ 3, 2n− 1, 2n+ 1}, {2n, 2n− 1, 2n+ 

1, 2n+ 1−1,2n− 1− 1}, and {2n, 2n− 1, 2n+ 1, 2n−2(n+ 1/2)+ 1, 2n+ 2(n+ 1/2)+1} [12–14].An 

application-specific RNS-based processor uses mainly adders and multipliers. The area, time, and power needed 

to perform modular additions are very critical factors in applications that use RNS. A modular multiplier is 

basically seen as a process of successive binary and modular additions [1, 15, 16]. Examining the form of 

different moduli introduced in three- four-, and five- moduli sets reveals that most of these moduli are of the 

form(2n± 1) [13], (2n± 3) [12], (2n± 2(n+ 1/2)+ 1) [13, 14] or more general forms such as (2n±K), where 3 

≤K< 2n− 1 [1]. Most of the published research in designing RNS-based modular adders has- been dedicated to 
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the moduli of the form 2n and (2n± 1) [17–23].Significant improvements have been achieved in the proposed 

designs, where the delay requirements of modulo (2n± 1) adders were getting closer to the delay of a modulo 2n 

binary adders. Such an advancement is crucial in improving the overall performance of any RNS-based 

processor. On the other hand, very limited work has been dedicated to general modular adders [24–32], or 

modulo-specific adders, other than modulo (2n± 1) [33–35].This work is intended to propose modulo (2n±K) 

adders that can serve any moduli, where any moduli can be expressed using one of the two given forms. The 

intention is to reduce the area and time requirements of such adders to approach those of modulo (2n± 1). Any 

improvement in this direction would make higher-order moduli sets, such as{22n, 2n− 1, 2n+ 1, 2n− 2(n+ 1/2)+ 

1, 2n+ 2(n+ 1/2)+ 1}, more appealing in DSP and cryptographic applications that require high-level of 

parallelism. 

 

REVERSIBLE GATES 

Reversible circuits give a coordinated connection among data sources and yields; accordingly, information 

sources can be recuperated from yields. This fascinating component results in huge power saving in advanced 

circuits [20]. Established advanced entryways are not reversible, reversible doors ought to be planned as 

fundamental segments to structure coherent reversible circuits. Understood reversible doors are Feynman, Peres 

and HNG [20, 21]. The square charts of these entryways are introduced in Fig. 1 

 
Figure 1: Representing Reversible gates 

MODULO ADDER CONFIGURATION UTILIZINGREVERSIBLE CIRCUITS 

This segment exhibits the reversible usage of three particular viper structures that are much of the time 

connected to RNS.A. The CSA with EAC the CSA is a 3-to-2 pressure unit that is extremely mainstream for 

customary number arithmetic just as in RNS designs because of its speed and cost. ACSA can be worked by 

utilizing n FAs for including three n-bit operands. As per [21], the HNG reversible door can be utilized to 

understand a FA by setting the fourth contribution of HNG to the zero-rationale level, as appeared in Fig. 2 

 
Figure 2: The RCA-based Modulo Adder 

The RCA with EAC for modulo 2n -1 expansion of two n-bit numbers, requires n FAs and n HAs in the first 

and second dimensions, individually. Like CSA, FAs can be acknowledged with HNG entryways. Furthermore, 

the Peres reversible door can be utilized to actualize a HA, where the third info bit is set to zero,thelast quantum 

cost of the RCA with EAC for two n-bit operands is 6n+4n=10n, since the individual quantum cost and 

profundity of a Peres entryway is 4. In addition, the all-outquantum profundity of the RCA with EAC is ((3×(n- 

1)+4+(3×(n1)+5))×∆. Besides, the all- outconsistent sources of info and rubbish yields are 2n and 3n, 

individually, since one of the contributions of HNG and Peres entryways is zero, and furthermore two and one 

yields of HNG and Peres doors, separately, are not utilized. 
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PROPSOED MODULO ADDITION: 

1. DESIGN PROCEDURE: 

An RNS-based modulo (2n−K) adder is defined as 

S=A+Bm1 

where  

m1= (2n−K), 3 ≤K≤ 2n− 1− 1. 

Equation can be rewritten as 

 
Observing in both cases of the last equation that S<m1< 2n, then applying modulus 2n to both cases of (8) 

results in 

 
Where cout is the output carry resulting from computing (A+B+K). It should be observed that applying 

modulus 2n to anyone-negative integer implies considering just the least significant nbits of the binary 

representation of the integer. The basic concept used in this paper for evaluating S in (9 ) is to compute, 

simultaneously, both output cases (i.e. A+B andA+B+K), determine cout and select one of the two outputs 

viatristate-based MUXs.The output of the first case of (9) (i.e. ⟨A+B⟩2n) is simply performed by a structure 

similar to Fig. 2. However, in order to compute the second case of (9), the three stages of the adder of Fig. 2 

(namely preprocessing stage, parallel-prefix stage, and the sum computation stage) need to be modified as 

follows: 

i. Preprocessing stage: The binary representations of A, B and K 

. 

 
 

 
 

where⊙ refers to an exclusive NOR logic operator. Adding ai to biis performed using a half-adder circuit if ki= 

0. However, addingai, bi, and ki is performed using a pseudo half-adder circuit if ki= 1.The half-adder and 

pseudo half-adder circuits are shown in Fig. 
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Figure3: Pseudo Half adder circuits 

 

FSM MODEL FOR MODULO ADDITION 

 
Figure 4: FSM control model for modulo addition. 

Our design aims to full fill the design formulation as mentioned above using FSM based circuit. This design 

would improvise different scenario of the states of the addition for each input provision. 

The input data provision with the FSM would improvise 12 states to complete the 32 bit adder and 16 bit 

adder. 

RESULTS AND DISCUSSION: 

 
Figure 5: Representing reversible adder gates 
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Figure 6: Representing the final output for

 

COMAPRISIONS TABLE 

CONCLUSIONS 

The potential of RNS in DSP and

performance of modular adders. This paper presented new

moduli can take any form of (2n±K),3

significantly more efficient than other

moduli are imposed. The new structures

applications and the overall computational speed.
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