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ABSTRACT 

 

The advent of the Internet of Things (IoT) has revolutionized data collection, creating 

opportunities and challenges, particularly in ensuring privacy and efficiency in data analytics. 

This research introduces a novel model that integrates Federated Learning (FL) with Differential 

Privacy (DP) to address these challenges in IoT environments. Our model decentralizes data 

processing, keeping sensitive user data localized on IoT devices, thereby enhancing 

confidentiality and compliance with stringent privacy regulations.. By incorporating differential 

privacy mechanisms, the model adds calibrated noise to the aggregated model updates, which 

effectively masks individual data contributions without compromising the overall model 

accuracy. The proposed model demonstrates a reduction in network data transmission by up to 

40%, significantly alleviating the computational load on the network and individual devices. 

Moreover, it ensures robust and scalable performance across diverse IoT ecosystems, 

maintaining high reliability with a consistency rate of 99.5% under varying network conditions 

and device capabilities. The proposed deep learning architecture demonstrates an accuracy 0f 

99.42%, recall of 99.9%, precision of 98.97%, F1-Score of 99%. This approach not only fortifies 

data privacy but also optimizes computational resources, setting a new standard for secure and 

efficient IoT data analytics. 

Keywords: differential privacy, federated learning, internet of things, privacy-preserving, 

scalability.  

1. INTRODUCTION 

 

In today's interconnected world, the Internet of Things (IoT) stands as a revolutionary 

ecosystem of devices that communicate and interact with each other and with the cloud. From 

smart home systems and healthcare sensors to industrial IoT (IIoT) and smart city applications, 

IoT devices generate an immense volume of data that holds the potential to transform industries 

[1]. However, this transformation comes with significant privacy and security challenges. The 

personal and sensitive nature of much of the data collected by IoT devices necessitates rigorous 

strategies to ensure that data remains secure and private [2].  
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IoT environments are characterized by their heterogeneity, with myriad devices often 

operating on different platforms and standards. This diversity, while beneficial for innovation 

and flexibility, introduces complex security vulnerabilities and privacy concerns. IoT devices, 

often being on the edge of the network and sometimes lacking robust security measures, are 

susceptible to various attacks. These can lead to unauthorized access to sensitive data, including 

personal health records, financial information, and personal identifiers [3].Without proper 

safeguards, IoT devices can be used to track individuals’ movements and activities, leading to 

significant privacy violations.Manipulation of data from IoT devices can have serious 

implications, ranging from false health data leading to misdiagnosis to altered data affecting 

industrial processes.As IoT networks grow, ensuring that security measures scale effectively 

without compromising performance or functionality becomes challenging [4]. 

 

The utility of IoT systems depends significantly on their ability to process and analyze data 

efficiently and accurately. In healthcare, IoT devices like wearables and remote sensors collect 

data that can predict health events, monitor chronic conditions, and improve overall patient care. 

The privacy of this data is paramount due to its sensitive nature.IoT applications in smart cities 

involve traffic management, waste management, and energy conservation systems that rely on 

the continuous influx of data from sensors across the city. Ensuring the privacy and security of 

this data is crucial to maintaining the trust of the citizens.Industrial IoT(IIoT) uses sensors and 

machines to optimize manufacturing processes and predictive maintenance. The data involved 

can be proprietary and is often subject to industrial espionage, making security essential [5]. 

 

Federated Learning (FL) emerges as a potent solution to some of the privacy and security 

challenges in IoT by enabling devices to learn a shared prediction model while keeping all the 

training data on the device, decoupling the ability to do machine learning from the need to store 

the data in the cloud [6-7]. By processing data locally and only sharing model updates, FL 

minimizes the risk of exposing sensitive data.FL can be performed on local devices, reducing the 

need for constant data transmission to a central server, thereby decreasing latency and network 

congestion.FL allows for personalized model training that accounts for the unique contexts of 

individual devices, potentially leading to better performance and more robust models. 

 

While FL addresses the issue of keeping personal data on the device, the shared model 

updates might still leak sensitive information [8]. Differential Privacy (DP) provides a 

framework to quantify and limit privacy loss when sharing information.DP introduces 

randomness into the aggregated data or model updates, ensuring that it is difficult to trace any 

piece of data back to any individual user [9].The integration of DP with FL helps protect against 

inference attacks, where malicious entities could use shared updates to infer properties about the 

underlying data.The challenge in integrating FL with DP lies in balancing the noise added for 

privacy with the accuracy of the model. Careful tuning of privacy parameters is required to 

maintain utility while ensuring robust privacy protections. 

 

There are regulatory compliance and ethical considerations while using IoT. With the 

implementation of stringent data protection laws like the General Data Protection Regulation 

(GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the U.S., it is crucial for 

IoT deployments to ensure compliance. FL and DP not only enhance security and privacy but 
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also help in meeting these regulatory requirements by design.The ethical implications of data use 

in IoT, such as consent and transparency, are increasingly under scrutiny. FL can provide a 

framework where data utility is balanced with ethical considerations, as data does not leave the 

device, thereby adhering to privacy by design principles. IoT devices often have limited 

processing power and battery life. Implementing FL and DP requires careful consideration of 

these constraints. Techniques such as model pruning, lightweight cryptographic methods, and 

efficient on-device learning algorithms are critical [10]. 

 

Innovations in DP include new ways of adding noise to data or model updates to improve 

privacy guarantees while minimizing impact on the model’s utility. Techniques such as adaptive 

differential privacy, where the amount of noise is adjusted based on real-time risk assessment, 

are being explored. As IoT devices vary widely in capabilities and operating systems, FL must 

be robust across diverse architectures. Standardization of protocols and model architectures can 

help in achieving this interoperability. Setting industry-wide standards for differential privacy, 

including benchmarks for privacy budgets and acceptable noise levels, can help in uniformly 

securing IoT deployments. IoT networks can scale to billions of devices. Scalable FL 

architectures that can handle such extensive networks efficiently, with minimal delay and 

overhead, are necessary. In scenarios like healthcare monitoring or real-time traffic management, 

decisions need to be made in milliseconds. Ensuring real-time data processing with FL and DP 

without significant delays poses a technical challenge.While implementing FL and DP enhances 

privacy and security, it must also be cost-effective. The economic impact of deploying these 

technologies at scale, including potential savings from avoiding data breaches and penalties, 

should be considered.By ensuring data privacy and security, FL and DP can increase user trust in 

IoT applications, leading to wider adoption and social acceptance. 

 

The integration of Federated Learning and Differential Privacy into IoT systems represents a 

forward-thinking approach to addressing the inherent privacy and security challenges of the IoT 

landscape. Continuous innovation and research in these areas will be key to developing robust, 

efficient, and secure IoT solutions that respect user privacy and comply with global data 

protection standards. The proposed model represents a sophisticated approach to balancing 

privacy concerns with the need for efficient, real-time data analysis in IoT environments. Its 

development could set a benchmark for future IoT applications, particularly in sensitive domains 

where data privacy is paramount. The objectives of the proposed model are 

 To ensure the confidentiality of user data throughout the data lifecycle, especially during 

analysis. This is achieved by keeping the data decentralized and adding noise to any 

shared information, thus masking individual contributions. 

 To protect data against unauthorized access and corruption as it flows from IoT devices 

to analytics systems. This involves ensuring that data manipulation does not compromise 

the decision-making processes dependent on this data. 

 To reduce the computational burden on individual IoT devices and the network by 

processing data locally (on-device processing) and minimizing the amount of data 

transmitted between devices and the central server. 
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 To effectively manage and scale across a diverse range of IoT devices and ecosystems, 

ensuring consistent performance and reliability regardless of the device capabilities or 

network conditions. 

 

The rest of the paper is organized as follows. In section 2, the existing methods related to IoT 

privacy and security are discussed. In section 3, the design and development of the system 

components are elaborated. In section 4, the performance of the proposed model is evaluated and 

comparative analysis is discussed.  

 

2. EXISTING SYSTEMS 

 

The convergence of IoT with privacy-preserving technologies marks a significant 

advancement in how data is securely processed and analyzed. Existing systems, equipped with 

state-of-the-art privacy techniques such as differential privacy and homomorphic encryption, 

offer insights into the current capabilities and the effectiveness of these approaches [11]. The 

challenges in IoT privacy include ensuring data confidentiality, integrity, and availability while 

preventing unauthorized data access and ensuring compliance with data protection regulations 

like GDPR. Moreover, IoT devices are often deployed in unsecured environments, making them 

vulnerable to attacks [12]. 

 

Homomorphic Encryption (HE)allows computations to be performed on encrypted data, 

producing an encrypted result that, when decrypted, matches the result of operations performed 

on plaintext [13].It is used in cloud computing environments where data privacy is critical, and 

operations need to be performed on sensitive data. Research works such as [14-17] have laid the 

groundwork for fully homomorphic encryption, although practical challenges limit its 

widespread implementation due to computational overhead.Secure Multi-party Computation 

(SMC)allows parties to jointly compute a function over their inputs while keeping those inputs 

private. These mechanisms are useful in collaborative IoT environments like supply chain 

management, where multiple stakeholders need to compute shared results without revealing 

individual data [18].Anonymization and data masking techniques such as k-anonymity, l-

diversity, or t-closeness are used to anonymize data, ensuring that data cannot be traced back to 

individuals. These methods are used in scenarios where data needs to be shared externally, like 

in data lakes for analytics across different organizational departments. However, maintaining 

data utility post-anonymization is a major challenge, as excessive anonymization can reduce the 

usefulness of the data for analytics [19]. 

 

Blockchain technology offers robust security features that are beneficial for IoT devices, 

which are often deployed in insecure environments and are susceptible to tampering.Blockchain 

can be used to create decentralized security models for IoT networks, where data integrity and 

privacy are maintained without relying on a central authority. This model enhances security and 

resilience against attacks.Smart Contracts [21] are used for Automated Privacy Management. 
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Blockchain-based smart contracts can automatically enforce privacy policies and user consent in 

IoT systems, ensuring compliance with regulations like GDPR without manual intervention [22]. 

 

Emerging Trends and Technologies such as AI-Driven privacy techniquesusingmachine 

learning models are being used to predict and mitigate privacy risks in IoT applications 

automatically. These models can dynamically adjust privacy settings based on user behavior and 

the sensitivity of the data being processed.With increasing regulatory pressures, there is a 

growing emphasis on integrating privacy considerations directly into the design phase of IoT 

devices and systems. This approach ensures that privacy is not an afterthought but a foundational 

component of technology development [23-24]. 

 

The privacy challenges in IoT are significant, given the scale, complexity, and sensitivity of 

the environments in which IoT systems operate. The continued development of sophisticated 

privacy-preserving technologies is critical to harness the full potential of IoT innovations while 

safeguarding the privacy of individuals. Future research will likely focus on enhancing the 

efficiency of these technologies, expanding their applicability, and seamlessly integrating them 

into existing and new IoT architectures. As this field evolves, it will continue to drive the 

convergence of IoT with advanced computational models, fostering a secure and privacy-

respecting digital future. 

 

While traditional methodologies have laid a solid foundation, they often fall short in 

addressing the increasingly complex privacy and efficiency demands of modern IoT ecosystems. 

The integration of Federated Learning (FL) and Differential Privacy (DP) in the proposed 

framework marks a significant advancement over these conventional approaches, offering a 

robust solution tailored to meet these challenges. The proposed FL-DP based model provides 

distinct advantages:  

 By utilizing Federated Learning, it ensures that sensitive data remains on the device, 

eliminating the need for data to be centralized and thus reducing the risk of mass data 

breaches. This decentralized approach not only enhances privacy but also reduces the 

bandwidth required for data transmission, thereby improving the system's overall 

efficiency.  

 The incorporation of Differential Privacy within this framework adds an additional layer 

of security by injecting noise into the aggregated data, ensuring that individual data 

points cannot be reverse-engineered from the model updates. 

 The FL-DP model adapts seamlessly to the diverse and dynamic nature of IoT 

environments. It supports scalability and flexibility, accommodating a growing number of 

devices without a significant compromise in performance or privacy. This scalability is 

crucial for IoT applications that are expected to manage an exponentially growing 

volume of data and device connections.  
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 In contrast to existing models which often require complex trade-offs between data utility 

and privacy, the FL-DP framework provides a balanced solution, optimizing both without 

substantial sacrifices. This approach not only aligns with stringent global data protection 

regulations but also fosters trust among users, which is paramount for widespread 

adoption of IoT technologies. 

 

3. SYSTEM MODELING 

 

The proposed system integrates Federated Learning (FL) and Differential Privacy (DP) to 

secure and enhance IoT data analytics. This model addresses the challenges of privacy and 

efficiency in IoT environments by decentralizing data processing and keeping sensitive user data 

localized on IoT devices. This approach enhances confidentiality and ensures compliance with 

stringent privacy regulations like GDPR. Fig 1 shows the block diagram of the neural network 

architecture and other processes used in the proposed model. This architecture ensures that the 

model is capable of handling the type of data typically generated by IoT devices while being 

robust enough to ensure user privacy through differential privacy mechanisms and federated 

learning protocols. The model should be lightweight to run on edge devices but sophisticated 

enough to provide meaningful analytics. 

 

 
Fig 1. Block diagram of the neural network architecture used in the proposed model. 

 

The proposed neural network architecture for privacy-preserving IoT data analytics integrates 

Federated Learning (FL) and Differential Privacy (DP) and is tailored for efficient operation on 

edge devices with limited computational power. The architecture typically begins with an Input 

Layer designed to accommodate multi-dimensional data from IoT sensors. Optional 

Convolutional Layers with 16 filters of size 3x3 may be included if the data exhibits spatial or 

temporal patterns, using 𝑅𝑒𝐿𝑈 activation and same padding to maintain dimensionality. The 

network also includes Dense Layers where the first layer consists of 128 units followed by a 

Dropout layer at a rate of 0.5 to prevent overfitting, and a second Dense Layer with 64 units, 

both using 𝑅𝑒𝐿𝑈 activation. The Output Layer varies based on the application; for classification 

tasks, it features a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥  activation corresponding to the number of classes, while for 

regression, it features a single unit with linear activation.  

 

JAC : A Journal Of Composition Theory

Volume XVIII, Issue X, OCTOBER 2025

ISSN : 0731-6755

Page No:84



The input layer receives data directly from IoT devices and the input shape depends on the 

features collected. If each device collects three types of data such as body temperature, heart rate 

and Oxygen levels, then the input vector is three dimensional and is given by 

 

𝐱 =  (
𝑥1
𝑥2
𝑥3

)       (1) 

 

where 𝑥1, 𝑥2 and 𝑥3 are the measurements. The sensor data readings has spatial and temporal 

patterns such as sequential sensor readings, and hence they are applied to a convolutional neural 

network in order to extract relevant features. 

 

(𝑓 ∗  𝐱)𝑖,𝑗 =  ∑ ∑ 𝑥𝑖+𝑚,𝑗+𝑛
𝑁−1
𝑛=0  . 𝑘𝑚,𝑛 + 𝑏𝑘

𝑀−1
𝑚=0    (2) 

 

where ∗ convolution operation, 𝐱is the input, 𝑘 is the convolutional kernel of size 𝑀 × 𝑁. 𝑏𝑘is 

the bias term. After convolution, the ReLU activation function is used and is given by 

 

𝑅𝑒𝐿𝑈(𝑧) =  max (0, 𝑧)     (3) 

 

The output from these layers is fed to the dense layers to process the extracted features. The first 

dense layer is given by 

 

𝐳(1) = 𝑅𝑒𝐿𝑈(𝐖(1)𝐡 + 𝐛(𝟏))     (4) 

 

Here, 𝐡is the input vector from the previous layer, 𝐖(1) is the weight matrix, 𝐛(𝟏) is the bias 

vector. A dropout is a regularization technique used to prevent overfitting in neural networks. 

During training, dropout randomly sets a fraction of the input units to zero at each update step, 

which helps in making the model robust. To do this, a binary mask𝐦is generated, where each 

element is independently drawn from aBernoulli distribution with probability, 𝑝. The probability 

is the dropout rate given by 

 

𝑚𝑖 =  {
1 with probability 𝑝

0 with probability 1 − 𝑝 
    (5) 

 

The input vector 𝐡 is element-wise multiplied by the mask vector 𝐦. This operation is given by 

 

𝐡̃ =  𝐡 ⨀ 𝐦      (6) 

 

where ⨀denotes element-wise multiplication. Each output unit is scaled by a factor of 
1

𝑝
 during 

training to maintain the expected value of the outputs.  

 

 

JAC : A Journal Of Composition Theory

Volume XVIII, Issue X, OCTOBER 2025

ISSN : 0731-6755

Page No:85



𝐡̃ =  
𝐡 ⨀ 𝐦

𝑝
      (7) 

 

Let z be the output of a layer before applying the activation function. For a dense layer with 

weights 𝐖and biases b. 

 

𝐳 =  𝐖𝐡̃ + 𝐛      (8) 

 

After applying the activation function 𝜙, the output is  

 

𝐚 =  𝜙(𝐳)      (9) 

 

During the training process, the dropout randomly sets a fraction of the input units to zero at each 

update.  

 

𝐳dropout
(1)

=  𝐳(1). 𝐦     (10) 

 

During the testing process, the dropout is not applied directly. Instead, the weights are scaled by 

the dropout rate 𝑑 to ensure that the expected value of the outputs remains the same as during the 

training.  

 
𝐖test = 𝑑𝐖train     (10) 

 

The output of the second dense layer is given by 

 

𝐳(2) = 𝑅𝑒𝐿𝑈(𝐖(2)𝐡 + 𝐛(𝟐)    (11) 
 

The output layer is a Softmax activation with units equal to the number of classes.  

 

𝑦̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐖(3)𝐳(𝟐) + 𝐛
(𝟑))   (12)  

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐳)𝑖 =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
    (13) 

 
To enhance privacy, noise layers that add Gaussian noise and gradient clipping are integrated within the 

network to adhere to DP principles. Gaussian noise is added to the gradients 

 

𝐳 → 𝐳 + N(0, 𝜎2)     (14) 

 

The gradient clipping ensures that the updates do not reveal sensitive information.  

 

 𝐠 → 𝐠 . min (1,
𝐶

‖𝑔‖2
)     (15) 

 

Here, 𝜎is the noise scale and 𝐶 is the clipping norm. The model uses an Adam optimizer and is 

configured for local training on individual devices with secure aggregation protocols for FL, 

ensuring that the global model updates do not compromise individual data privacy. Each IoT 
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device trains the model locally on its data batch. The local model update is ∆𝐰. The model 

updates any anonymous aggregation of data globally without exposing the individual updates. 

 

𝐰𝐭+𝟏 =  𝐰𝐭 +
1

N
∑ ∆𝐰𝐢

N
i=1     (16) 

 

This setup allows for effective and secure data processing and analysis directly on the IoT 

devices, minimizing latency and preserving privacy. Once the local models are trained, 

differential privacy mechanisms are implemented to ensure the privacy of individual data points. 

Differential privacy adds calibrated noise to the model updates before they are transmitted to the 

FL server. This noise effectively masks individual data contributions, making it difficult to infer 

any single data point from the aggregated results. The mathematical representation of differential 

privacy ensures that the probability of obtaining the same result from neighboring datasets 

differs by at most a factor of ϵ, with ϵ being the privacy budget and δ a small probability.The 

model updates, now containing differentially private noise, are securely transmitted to the 

Federated Learning server. The communication network facilitates this data transfer, ensuring 

secure and efficient transmission while optimizing network load. By reducing the volume of data 

transmitted by up to 40%, the system alleviates the computational load on the network and 

individual devices. Fig 2 shows the flowchart for the entire process. The Adam optimizer  adapts 

the learning rate based on the past gradients. 
 

𝐦𝐭 =  𝛽1𝐦𝐭−𝟏 + (𝟏 − 𝛽1)𝐠𝐭    (17) 
 

 

𝐯𝐭 =  𝛽2𝐯𝐭−𝟏 +  (𝟏 − 𝛽2)𝐠𝐭
𝟐    (18) 

 

 

𝐦̂𝐭 =
𝐦𝐭

𝟏−𝛽𝟏
𝐭      (19) 

 

𝐯̂𝐭 =
𝐯𝐭

𝟏−𝛽𝟐
𝐭      (20) 

 

𝐖𝐭+𝟏 =  𝐖𝐭 −  η
m̂t

√v̂t+ϵ
    (21) 

 

The cross-entropy loss of the proposed model is given by 
 

𝐿 =  
1

𝑛
∑ (𝑦𝑖 −  𝑦𝑖̂

𝑛
𝑖=1 )2     (22) 

 

At the FL server, the noisy model updates are aggregated to form a new global model. The 

aggregation process, often implemented as Federated Averaging, combines the updates from 

multiple devices, weighted by the number of samples on each device. The aggregated global 

model can also have additional noise added to ensure global differential privacy.The updated 

global model is then redistributed to all IoT devices, where it serves as the new starting point for 

the next round of local training. This iterative process continues, with each round further refining 

the global model while preserving individual data privacy.In terms of regulatory compliance, the 

model adheres to privacy laws such as GDPR by keeping data localized on devices and ensuring 

it is anonymous through differential privacy 
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Fig 2. Flowchart for training process in FL-DP based proposed model. 
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Algorithm 1 shows the pseudocode for the proposed FL-DP algorithm. This pseudocode 

provides the implementation of a privacy-preserving federated learning system with differential 

privacy, suitable for scenarios where data privacy is critical, such as in IoT applications handling 

sensitive data. The algorithm starts with the initialization where the global model's initial weights 

are set up before training begins.In each round, a subset of clients is randomly selected to 

participate, ensuring that each round only involves a manageable number of clients to both 

preserve privacy and manage communication overhead.Each selected client receives the current 

global model weights and performs local training. Gradients computed on batches of data are 

first clipped to a predefined norm 𝐶, ensuring that no single data point has an outsized influence, 

and then noise proportional to this norm is added to ensure differential privacy.These are key 

steps for integrating differential privacy. Clipping limits the sensitivity of the output to any 

single input, and adding Gaussian noise ensures that the output (updated weights) does not reveal 

precise information about the input data. After receiving updates from selected clients, the server 

averages these updates and adjusts the global model accordingly.Periodically, the global model 

may be evaluated on a validation dataset to monitor performance and convergence. 
 

Algorithm-1: Algorithm for implementingFederated Learning with Differential Privacy (FL-DP) 

Inputs: 

    K: total number of clients, N: number of clients selected per round, T: total training rounds 

    η: learning rate, C: clipping norm, σ: noise multiplier (based on privacy budget ε, δ) 

    B: batch size for training on each client 

Output: 

    Return the trained global model W_T 

// Initialize: 

    Initialize global model weights W_0 

for each round t = 1 to T do: 

S_t: randomly select N clients from K available clients 

for each client k ∈S_t in parallel do: 

W_k^t: receive global model weights W_(t-1) 

        // Local training with DP-SGD 

for each local epoch do: 

for each batch b ∈ B do: 

                Compute gradients g_b(W) on the batch b 

                Clip gradients: 

g_b(W) = g_b(W) / max(1, (||g_b(W)||_2 / C)) 

                Add noise: 

g_b(W) = g_b(W) + N(0, σ^2 * C^2) 

                Update local weights: 

W_k^t = W_k^t - η * g_b(W) 

             Send the updated weights ΔW_k^t = W_k^t - W_(t-1) to the server 

 

    // Aggregation at server 

    Aggregate updates: 

ΔW^t = (1 / N) * Σ (from k=1 to N) ΔW_k^t 

 

    Update global model: 

W_t = W_(t-1) + ΔW^t 

 

    Evaluate the global model W_t on validation data  
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4. RESULTS 

 

To evaluate the proposed privacy-preserving IoT data analytics using Federated Learning and 

Differential Privacy model, a thorough experimental setup with various IoT, and a central server 

equipped with a high-performance CPU and ample storage are used. These components are 

interconnected via a robust network infrastructure supported by routers and switches. The 

software stack includes lightweight operating systems for IoT devices, Linux for servers, and 

development environments such as Python with IDEs like PyCharm. Key technologies include 

TensorFlow Federated for managing distributed machine learning, Google's Differential Privacy 

library for privacy measures, and TensorFlow or PyTorch for model building. Data management 

is handled by systems like PostgreSQL or MongoDB, with Apache Kafka for real-time data 

streaming. The entire setup is monitored using tools like Prometheus and Grafana, ensuring 

secure, efficient operations and data integrity throughout the experimental evaluation. This setup 

allows for comprehensive testing and modification of the privacy-preserving mechanisms and 

machine learning algorithms across a simulated real-world IoT network. 

 

To evaluate the proposed model, suitable performance metrics are identified. These metrics 

will assess various aspects of the model, including its efficiency, privacy preservation, 

computational load, and overall effectiveness compared to existing models. The models 

compared include centralized approaches, Federated Learning without Differential Privacy (FL 

w/o DP), Federated Learning with Homomorphic Encryption (FL w/ HE), SMC-based method, 

and blockchain-based methods. Accuracy measures the correctness of the predictions made by 

the model. For classification tasks, it is the proportion of true results among the total number of 

cases examined.Fig 3 shows the accuracy comparison among different methods. The proposed 

model achieves the highest accuracy of 99.42%. This indicates that the model's predictions are 

more often correct than those of other models. The integration of Federated Learning (FL) 

ensures that the model learns from diverse data distributed across devices, improving its 

generalization capability. Differential Privacy (DP) maintains the integrity of data, ensuring that 

the noise added does not significantly degrade model performance. 

 

Fig 4 shows the comparison of Precision, Recall, and F1-Scores among different models. 

These metrics evaluate the model's performance in terms of positive class identification. 

Precision is the ratio of correctly predicted positive observations to the total predicted positives. 

Recall is the ratio of correctly predicted positive observations to all observations in the actual 

class. The F1-Score is the harmonic mean of precision and recall. The proposed model's high 

precision and recall indicate that it effectively identifies positive cases while minimizing false 

positives and false negatives. This balance is crucial in applications like healthcare, where both 

false positives and negatives can have significant consequences. The F1-Score confirms the 

model's robustness in maintaining this balance. The precision, recall and F1-scores of the 

proposed model are 98.97%, 99.99% and 99%, respectively. 
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Fig 3. Comparative analysis of the proposed model with existing methods in terms of Accuracy. 

 

 
Fig 4. Comparative analysis of precision, recall and F1-scores between different mode 

 

Fig 5 demonstrates the performance of various models in terms of training and inference 

times. The time taken for the model to complete training. It is crucial in resource-constrained 

environments like IoT. The inference time is the amount of time taken for the model to make 

predictions. Lower inference time is crucial for real-time applications. The proposed model has 
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the shortest training and inference times, demonstrating its efficiency. This efficiency is achieved 

through the use of Federated Learning, which reduces the need for constant data transmission, 

and optimized local training algorithms that minimize computational overhead. 
 

 
Fig 5. Comparative analysis of training and inference times between different models. 

 

The Differential Privacy Budget (ε)represents the level of privacy guarantee provided by the 

model. Lower values indicate stronger privacy. The existing models demonstrate a privacy level 

ranging from 0.25 to 0.5. The proposed model's privacy budget (ε = 0.2) is the lowest, indicating 

the strongest privacy protection. The integration of Differential Privacy ensures that individual 

data points are effectively masked, protecting against inference attacks while maintaining model 

accuracy. 

 
Fig 6. Comparative analysis of differential privacy budget between different models. 
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Scalability is the ability of the model to maintain performance as the number of devices and 

data volume increases.As illustrated in Fig 7, he proposed model maintains a high scalability rate 

of 99.2%, ensuring consistent performance as the number of devices and data volume increases. 

Scalability is achieved through the use of Federated Learning (FL), which allows data to be 

processed locally on IoT devices rather than being centralized. This decentralization enables the 

system to efficiently manage a growing number of devices without significant performance 

degradation.By keeping data processing on local devices, the model reduces the central server's 

load, making it easier to scale the system horizontally by adding more devices without 

overwhelming the central infrastructure. The model uses optimized communication protocols to 

transmit only model updates rather than raw data, minimizing the bandwidth required and 

enabling the system to handle a large number of devices effectively. Also, the adaptive 

algorithms ensure that the model can adjust to the varying capabilities of different IoT devices, 

maintaining performance consistency across a diverse ecosystem. 

 
Fig 7. Comparative analysis of scalability between different models. 

 

Fig 8 demonstrates the performance of data reduction rate among different models. The 

percentage reduction in data transmission compared to traditional centralized models. The 

proposed model achieves a data reduction rate of 45%, significantly lowering the amount of data 

transmitted over the network. This reduction can be attributed to the Federated Learning 

approach, which only transmits essential model updates rather than complete datasets. FL 

processes data locally and only shares aggregated model updates, which dramatically reduces the 

volume of data that needs to be transmitted across the network.By adding noise to the model 

updates, the model ensures privacy while keeping the data transmission minimal and focused on 

necessary information only. 
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Fig 8. Comparative analysis of data reduction rate between different models. 

 

The computational efficiency measures the computational resources required for model 

training and inference, including CPU, memory usage, and energy consumption. The proposed 

model shows the lowest CPU usage (50%), memory usage (160 MB), and energy consumption 

(80 Joules) among compared models. This is achieved through optimized local processing 

algorithms and the reduction in data transmission, which lowers the overall computational load. 

The model includes adaptive mechanisms to manage CPU and memory usage dynamically, 

ensuring optimal resource utilization based on the current workload and device capabilities. 

 
Fig 9. Comparative analysis of computational efficiency between different models. 
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Overall, the proposed deep learning architecture's technical superiority is evident in its 

accuracy, scalability, data reduction rate, and computational efficiency. By leveraging Federated 

Learning and Differential Privacy, the model ensures robust, scalable, and efficient data 

processing suitable for diverse IoT ecosystems. This innovative approach addresses the inherent 

challenges of privacy and efficiency in IoT applications, setting a new benchmark for secure and 

effective IoT data analytics. 

5. CONCLUSION 

 

The proposed deep learning architecture for privacy-preserving IoT data analytics, which 

integrates Federated Learning (FL) and Differential Privacy (DP), demonstrates exceptional 

performance metrics. With an accuracy of 99.42%, recall of 99.9%, precision of 98.97%, and an 

F1-Score of 99%, the model showcases its capability to deliver highly reliable and accurate 

predictions. The architecture's ability to maintain high performance while significantly reducing 

network data transmission by up to 40% highlights its efficiency and suitability for resource-

constrained IoT environments. Moreover, the model's robustness and scalability are evident from 

its consistent performance, maintaining a reliability rate of 99.5% across diverse IoT ecosystems 

and varying network conditions. The integration of FL and DP not only ensures robust data 

privacy by keeping sensitive information localized and adding noise to model updates but also 

enhances compliance with stringent data protection regulations like GDPR. This sophisticated 

approach balances the need for privacy and efficiency, setting a new standard for secure and 

effective IoT data analytics. The proposed model's technical superiority and comprehensive 

performance metrics make it a pioneering solution for addressing the complex challenges of 

privacy and efficiency in modern IoT applications, paving the way for broader adoption and trust 

in IoT technologies. 
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