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ABSTRACT 

 
In the field of information measures, the probability distribution divergence models play a crucial 

role. On the other hand, fuzzy distributions can be used to solve problems where probability 

distributions fail. Therefore, it is impossible to ig

existence scenarios. The concept of weighted measures and fuzzy distributions are both taken into 

consideration in the current research, which also includes a study of dissimilar 

divergence models. 
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INTROTUCTION 
 

It has been established that the sense of distance is absolutely necessary for its applications in the fiel
of science and engineering. The divergence model, often known as the primary functional Kullback and 
Leibler's [10] distance model in probability spaces, is given by
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Researchers from time to time formulated abundant divergence models as follows:
 

Renyi’s [17] model: 
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Havrada and Charvat’s [5] model:
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Ferreri’s [4] model: 
 

 1 n 1
D(P:Q) 

 (1 pi ) ln   

  i 1  1
     

A DIVERGENCE MODEL STUDY OF VARIATIONS FOR DISCRETE FUZZY 
DISTRIBUTIONS 

 
 

G.Sampath Kumar, 2Ravi Padma,   3K. Pushpa Latha
Department of  H & S, Brilliant Institute of Engineering and Technology, 

Hyderabad, India 

In the field of information measures, the probability distribution divergence models play a crucial 

role. On the other hand, fuzzy distributions can be used to solve problems where probability 

distributions fail. Therefore, it is impossible to ignore the magnitude of hazy events in genuine 

existence scenarios. The concept of weighted measures and fuzzy distributions are both taken into 

consideration in the current research, which also includes a study of dissimilar 

Distance measure, Fuzzy events, Fuzzy divergence models, Weighted divergence 

It has been established that the sense of distance is absolutely necessary for its applications in the fiel
of science and engineering. The divergence model, often known as the primary functional Kullback and 
Leibler's [10] distance model in probability spaces, is given by

time to time formulated abundant divergence models as follows:

 
 


 , 1, 0  

 

 
 

Havrada and Charvat’s [5] model: 
 

 
 

 1,1, 0  

 

 
 

 p 
 

i ,0  

 

 q 
 

i 
 

A DIVERGENCE MODEL STUDY OF VARIATIONS FOR DISCRETE FUZZY 

Pushpa Latha 
Department of  H & S, Brilliant Institute of Engineering and Technology, 

In the field of information measures, the probability distribution divergence models play a crucial 

role. On the other hand, fuzzy distributions can be used to solve problems where probability 

nore the magnitude of hazy events in genuine 

existence scenarios. The concept of weighted measures and fuzzy distributions are both taken into 

consideration in the current research, which also includes a study of dissimilar variations in 

Distance measure, Fuzzy events, Fuzzy divergence models, Weighted divergence 

It has been established that the sense of distance is absolutely necessary for its applications in the fields 
of science and engineering. The divergence model, often known as the primary functional Kullback and 

time to time formulated abundant divergence models as follows: 

 
 
(1.1) 

 

 
 
(1.2) 
 
 
 
 
 
 
(1.3) 
 
 
 
 
 
 
(1.4) 

 

JAC : A Journal Of Composition Theory

Volume XI, Issue II, FEBRUARY 2018

ISSN : 0731-6755

Page No: 42



 
 
 
 
 

 

Kapur’s [8] models: 
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Taneja’s [19] model:               
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The above model is also known as arithmetic

 
Cichocki and Amari’s [3] models: 
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The models (1.10) and (1.11) are also known as
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On the other hand, a commanding instrument for inaccurate and indistinguishable 

circumstances where authentic examination is either complicated or unworkable is provided by the 

theory of fuzzy sets. Zadeh [21] developed this theory and Bhandari and Pal [2] twisted the
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The above model is also known as arithmetic-geometric mean divergence. 

Cichocki and Amari’s [3] models: 
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The models (1.10) and (1.11) are also known as -divergence and -divergence respectively. 

Some current developments regarding the investigations of divergence models in probability spaces

Ararat, Hamel and Rudloff [1], Watson, Nieto

Sankaran, Sunoj and Nair [18] etc. 
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circumstances where authentic examination is either complicated or unworkable is provided by the 

sets. Zadeh [21] developed this theory and Bhandari and Pal [2] twisted the
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divergence respectively. 

Some current developments regarding the investigations of divergence models in probability spaces 

Watson, Nieto-Barajas and Holmes 

On the other hand, a commanding instrument for inaccurate and indistinguishable 

circumstances where authentic examination is either complicated or unworkable is provided by the 

sets. Zadeh [21] developed this theory and Bhandari and Pal [2] twisted the 
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quantitative model for it. With comparative magnitude 

weighted divergence model. 

Observing the magnitude of events and the weighted conception, many researchers have twisted 

abundant weighted divergence models. Kapur [9] made meticulous investigations of the diverge

measures in probability spaces and developed numerous fuzzy divergence models for Harvada and 

Charvat [5], Renyi [17], Ferreri [4] etc. Scores of supplementary such models are comprised of 

Parkash [14], Parkash and Sharma [15], 

Ebrahimzadeh [13], Kobza [11] etc.

 

2.1 VARIATIONS IN DIVERGENCE MODELS
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Next, we present the preceding mentioned information in the following Table-
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provides the following figure:
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