ISSN: 0731-6755

An adjacent matrix representation of graph that serves as a data security mechanism to retrieve the key for both encryption and decryption

¹M V P Ramesh Babu, ²Rohini Pulipati, ³Srinivas Chilawar

^{1,2,3} Assistant Professor, ^{1,2,3}Department of Mathematics, Siddhartha Institute of Engineering and Technology, Hyderabad, India.

Abstract

It is crucial to never provide sensitive information via an unprotected connection since unwanted parties may intercept it and compromise its privacy. Therefore, it has become necessary and inescapable to plan a cryptosystem that satisfies the security criteria in terms of the secrecy, integrity, and validity of transmitted data. In fact, a lot of study has been done in this area. Despite the fact that several cryptosystems have been proposed in the literature, it has been shown that their performance and durability differ considerably amongst them. Since the dawn of time, information protection has played a critical role in human existence. Graph theory is one of the approaches used to secure data protection and message transmission, which is one of the most crucial methods used in cryptography. Many techniques are available to encrypt and decrypt the info. Cryptography is especially used to make the text unintelligible and non-readable so that the opponents cannot understand the meaning of the text. it's used in many applications like e-commerce; electronic communications such as mobile communications, sending private emails; business transactions; Pay-TV; transmitting financial information; security of ATM cards; computer passwords etc, which touches on many aspects of our daily lives. Cryptography provides privacy and security for the key information by hiding it. it's done through mathematical technique. A cryptographic scheme is secure as long as it is unbreakable in reasonable amount of time, in spite of the opponent is conscious of the algorithm used and key size. during this paper, we are proposing an algorithm that uses adjacent matrix representation of the graph through which key's obtained for encryption and decryption.

Key Words- Cryptography, Substitution, Adjacent Matrix, Data Encryption

Introduction

A readable communication may be made fully unreadable using a variety of techniques and ideas that are the foundation of the branch of cryptology known as cryptography. This field deals with several security challenges, including the privacy of persons, the secrecy of communication across insecure channels, the storage of data on insecure media, and others. To lessen the effect of hackers and to best prevent unwanted attempts to access this sensitive material, cryptography refers to the study and analysis of data encryption techniques. Information security's guiding principles, particularly those of confidentiality, integrity, authentication, and non-repudiation.

Confidentiality is a key part of security. This can be ensured by an encryption process where the data becomes unintelligible to any unauthorized parties trying to access it. The idea behind the encryption process is to turn plaintext into ciphertext so that only authorized parties can retrieve the message in its original format by reversing the encryption process, known as decryption. Technically, decryption should be extremely difficult for any unauthorized and unskilled parties attempting to perform it.

The main goal of Data Security is to secure data transmission over an unreliable network. When we send a message to someone, we always suspect that someone else will catch it and read or edit it before we send it again. There is always a desire to know about a secret message sent or received between two

parties with or without any personal, financial or political gains. It's no wonder to feel like sending someone a message so that no one else can interpret it. Information security has thus become a very critical aspect of a modern computer system. Information security is mostly achieved using cryptography. Art of Sciences and Graph theory computer science creates unreadable data so only a designated person is capable read text using cryptography. Encryption is the process by which we convert our data into ciphertext or not legible form. Decryption is the opposite process of encryption.

Encryption is the only conventional method for keeping data secure. Information could be which the unauthorized user accessed for nefarious purposes. Cryptography is a process to protect a network and data transmission over wireless networks. Data security is the main concept of data transmission security unreliable networks. Data security is a challenging and risky task that today's data communication touches various areas including secure communication channels, strong data encryption techniques and a trusted third party maintain a database. Rapid progress and development in the field of information technology, secure transmission confidential (secret) data thus receives a lot of attention. The adjacency matrix that we use in the network security plays a vital role in the transmission of secure keys.

Graph theory in mathematics refers to the study of graphs, which are the main subject of discrete mathematics. In general, a graph is represented as a set of vertices connected by edges. So they are mathematical structures used to model pairwise relationships between objects. It can be found in road networks, electrical circuits, constellations, etc. Graphs provide a way of thinking that can be used to model a wide variety of problems. They are the basis of many computer programs that enable communication and advanced technological processes. The Seven Bridges of Königsberg (1736) [8] is a mathematical problem well known for laying the foundations of graph theory. Graph theory is a relatively new concept that has been successfully incorporated and allowed the development of stronger encryption algorithms that have proven difficult to crack, even for the latest software solutions. It actually consists of modeling encryption problems using a graph representation so that they end up being problems in graph theory, where the solutions are usually well known.

The design of cryptosystems based on graph theory concepts is of utmost importance. In this work, we present a new cryptosystem that uses graph theory principles that enable a high degree of security while maintaining data processing performance. The rest of the paper is structured as follows. Preliminary knowledge on cryptography and graph theory is presented. The proposed algorithm is described with example.

Definitions

Cryptography - The process of transforming a plain message into ciphertext (unreadable) and then back again transforming this message back to its original form is called cryptography.

Plain text – The original message or plain text that must be in readable form encrypted and makes it an unreadable form.

Cipher-text – The transformed message we received after applying the key to plaintext.

Key - Some unreadable ciphertext, known only to the sender and recipient, the key is a variable that is useful using an algorithm to create ciphertext or to decrypt ciphertext.

Encipher and Decipher: The process of converting plaintext (readable text) to ciphertext (unreadable text). The process of converting ciphertext (unreadable text) back to plaintext (readable text).

Encryption and Decryption - The process of encoding a message using some key or method so that it is the meaning is not easily understood. The reverse process of the ciphertext conversion encryption method into plain text is decryption.

Brute Force Attack - A brute force attack is an intervention and testing process used to obtain information from authenticate users.

Graph: A graph G is a set of points called vertices V and a set of lines called edges E that connect some vertices together. A graph is defined as the set of vertices and edges that form the pair G = (V, E). • Simple graph: A graph in which each pair of vertices is connected by at most one edge and where no vertex has a loop.

Undirected graph: An undirected graph G is a pair (V, A) where V is a finite set of vertices and A is aset of unordered pairs of vertices. Also, loops are not allowed in undirected graphs.

Cycle: A chain whose start and end nodes are the same and which does not use the same link more than once.

Adjacency matrix

This is a matrix representation of the graph. It is used in computer processing. In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The matrix elements indicate whether a pair of vertices in the graph are adjacent or not. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. The advantage of using an adjacency matrix representation is that many results of matrix algebra can be arbitrarily applied to the study of structural properties of graphs. An adjacency list represents a graph (without multiple edges) by specifying the vertices that are adjacent to each vertex. This matrix is based on the arrangement chosen for the vertices. This matrix can represent both directed and undirected graphs. Let G be an undirected graph with m vertices from 1 to m. We call the adjacency matrix of graph the matrix

 $A = (a_{jk})$ where a_{jk} is the total number of edges joining vertex j to vertex k:

 $a_{jk} = w$ if and only if j and k are adjacent. $a_{jk} = 0$ if not. (1) with w is the weight of the edge (j, k)

Related work

Graph theory has become a very important component in many applications in the field of network security. Unfortunately, understanding the graph theory and its applications is one of the most difficult and complex missions. In this study, the authors reviewed some main applications of graph theory in IT security. Some aspects of graph theory applications were covered, especially with regard to encryption. Some related works that have applied graph theory in different types of networks and information security field are:

In 2013, Eftekhari and Abdullah [12], the researchers analyzed two graph-based authentication protocols. The weaknesses of each method were clarified. They proposed a new scheme without addressing the method of determining the number of nodes in the Journal of Discrete Mathematical Sciences and Cryptography titled Cryptanalysis and Improvements on Some Graph-Based Authentication Schemes.

In 2014, Mahmoud and Etaiwi1[7], the researchers presented a symmetric Cryptographic algorithm to encode data for the purpose of transferring by using a coding table. However, they did not mention the possibility of its application in distributed systems, in the Journal of Scientific Research& Reports titled Encryption Algorithm Using Graph Theory. In 2014, Sen and Samanta [10], the researchers focused on the possibility of using graph theory concepts in network monitoring and assessing the importance of individual routers within a network giving traffic pattern in the Journal IJIRT titled Network Security Using Graph Theory. In 2016, Dutta, et. al proposed an algorithm for encryption using the Euler graph by using encoder tracking the Hamilton circle from the encoded graph. However, the researchers had a problem applying it where each graph carries one letter of a message in the Journal International Journal of Pharmacy & Technology titled A Graph Based Message Encryption Algorithm.

Main Result

Proposed Algorithm: Use the proposed algorithm to encrypt and decrypt data. (Send key2 in the form of graph)

Encryption: This algorithm is used to convert plain text to cipher text.

- First we take a message from user which has to encrypt
- Use key1 to shift character.
- Encrypt the message by replacing each letter by decided key 1.
- Write encrypted message in the form of matrix. (where (n-1) x n where n=number of digits in key2) which is decided by sender and receiver.
- Read off the message row by row and permute the order of column.
- The output of step 5, write in matrix form again and read row by row.
- After reading row by row, we get our cipher text.

Decryption: This algorithm is used to convert cipher text to plain text.

- It take the cipher text and use key 2 to write cipher text in the form of matrix. (where, (n-1) x n where n=number of digits in key2) which is decided by sender and receiver.
- Arrange the cipher in matrix form column by column using key 2.
- Read message row by row.
- Again arrange the cipher of step 3 in matrix form column by column using key 2.
- Now decrypt the message with key1.
- Finally we get plain text.

Example :- (Encryption)

- First take a message or plain text from user which we have to encrypt. For ex. THIS IS MY TEST
- Use key1 to shift character.
- Suppose key 1 = +4
- Encrypt the message by replacing each letter by decided key 1.
- MCWLWIWQXXMX
- Write encrypted message in the form of matrix(where (n-1) x n where n=number of digits in key2) which is decided by sender and receiver.

Key2 is shared in the form of adjacent graph, sender and receiver have to calculate key2 from the given graph.

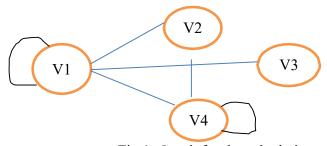


Fig.1: Graph for the calculation of key2

Convert the above graph into adjacent matrix which is used as key 2.

Table 1: Adjacent matrix of key2

	V1	V2	V3	V4
V1	1	1	1	1

V2	1	0	0	1
V3	1	0	0	0
V4	1	1	0	1

Now the key2 is **4 2 1 3**

Table 2(a): Message creation from key1

4	2	1	3
X	L	M	W
M	W	С	Q
X	I	W	X

Read off the message row by row and permute the order of column MEELWBWRQXMI.

The output of step 5, write in matrix form again and read row by row.

Table 2(a): Message creation from kev2

4	2	1	3
M	C	W	L
W	I	W	Q
X	X	M	X

After reading row by row, we get our cipher text. WWMCICLQXMWX (cipher text to be sent)

DECRYPTION

It take the cipher text and use key2 to write cipher text in the form of matrix (where (n-1) x n, where n=number of digits in key2) which is decided by sender and receiver.

Received cipher text is: - WWMCICLQXMWX

Arrange the cipher in matrix form column by column using key2.

Table 3(a): Cipher text in matrix form

4	2	1	3
M	C	W	L
W	I	W	Q
X	C	M	X

► Read message row by row. MCWLWIWQXXMX

Again arrange the cipher of step 3 in matrix form column by column using key 2.

Table 3(b): Cipher text in matrix form

4	2	1	3
X	L	M	W
M	W	С	Q
X	I	W	X

Received cipher text is: - XLMWMWCQXIWX

Now decrypt the message with key1. Key1= (-4)

Finally we get plain text. Result: This is my test

Conclusion

The "Double Transposition column" approach used to secure this algorithm, which uses the graph as the key, provides a number of benefits over a basic algorithm. Cryptanalysis is more challenging. The output is (plain text) cannot be cracked as a result of utilizing the graph to create the key2, increasing security. There is no way to attack by brute force. Through this, the suggested algorithm's maximum Caesar cypher constraints are achieved overcome. It's simple to upgrade the new app. Create several keys for applications such as online banking, e-commerce, electronic voting, etc. Simple Caesar cypher

implementation is challenging. Because graph theory is used in security, it occasionally consumes more memory.

References

- 1. Atul Kahate (2009)Cryptography and Network security, 2nd Edition, McGraw Hill
- 2. "Enhancing security of caesar cipher by Double columnar transposition method" by Vinod Saroha, Suman Mor and Anurage Dagar, International journal of advanced research in computer science and software engineering, vol. 2, issue 10, Oct. 2012.
- 3. Stalling. W (1999), Cryptography and Network security, 2nd Edition, Prentice Hall
- 4. William stalling "Network security Essentials (Application and standards)", Pearson Education, 2004
- 5. A. J. Menezes, J. Katz, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography. CRC press, 1996.
- 6. P. Amudha, A. C. Sagayaraj, and A. S. Sheela, "An application of graph theory in cryptography," International Journal of Pure and Applied Mathematics, vol. 119, no. 13, pp. 375–383, 2018.
- 7. Mahmoud, W. and Etaiwi, A. 2014. Encryption Algorithm Using Graph Theory. Journal of Scientific Research & Reports, 3(19): 2519-2527.
- 8. Connections between graph theory and cryptography Natalia Tokareva G2C2: Graphs and Groups, Cycles and Coverings September, 2426, 2014. Novosibirsk, Russia
- 9.P. Venugopal, "Encryption using double vertex graph and matrices," Solid State Technology, vol. 64, no. 2, pp. 2486–2493, 2021.
- 10.D. Sensarma and S. S. Sarma, "Application of graphs in security," International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 10, pp. 2273–2279, 2019.
- 11.T. A. Khaleel and A. A. Al-Shumam, "A study of graph theory applications in it security," Iraqi Journal of Science, vol. 61, no. 10, pp. 2705–2714, 2020.
- 12. Abdullah, H. O. and Eftekhari, M. 2013. Cryptanalysis and Improvements on Some Graph-Based Authentication Schemes. Journal of Discrete Mathematical Sciences and Cryptography, 16(4-5):297-306.