
ENTROPIC MODEL GENERATION FOR FUZZY DISTRIBUTIONS USING 

 

1A. Chandra Sekhar
1,2,3Assistant Professor, 1,2,3Department of  H & S, Brilliant Institute of Engineering and Technology, Hyderabad, 

 

 
ABSTRACT 
 
The two fundamental ideas of measures of entropy and directed divergence, which are a subset of applied 

mathematics, are extremely important and play a big part in the research on application domains, in 

information theory. By utilizing 

models for fuzzy distributions and fashioned the relationships between the t
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INTRODUCTION 

In situations when precise research is either difficult or impractical, it is a well

fuzzy set theory is a powerful tool for modeling undefined and indistinguishable circumstances. T

was given by Zadeh [20] to help with the set's fuzziness. The text of information measures contains many 

quantitative fuzzy entropic models. According on Shannon's [19] entropy, De Luca and Termini [3] 

suggested the fuzzy entropic model describe
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Bhandari and Pal [2] recommended the following fuzzy entropic model:
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Kapur [8] outlined the following fuzzy entropic model:
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
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The model (1.3) corresponds to Havrada and Charvat’s [4] entropic model.
 
Parkash [14] outlined the following new generalized model involving two real parameters and studied its 

many interesting properties. 
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Kapur [8] outlined the following fuzzy entropic model: 
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Parkash and Sharma [15] shaped several measures of fuzzy entropy, obtained some interaction among these 

measures and applied them to an 

 
On the other hand, Bhandari and Pal [2] profiled the following distance model between two fuzzy sets and 

it corresponds to Kullback and Liebler’s [10] divergence model:
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Kapur [8] has outlined countless fascinating mathematical expressions of fuzzy entropic models 

corresponding to Kapur’s [7] probabilistic models. Countless other developments regarding the revision of 

divergence models for fuzzy distributions has been made

6], Markechová, Mosapour and Ebrahimzadeh 
 
To generate new entropic models, we reflect on the following function:
 
(1.6) 
 
The result (1.6) can be second-handed to shape a fuzzy entropic model on behalf of each divergence model.
 
Some other possibilities can be taken as follows:
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A quantity of efforts related with the continuity of fuzzy entropic models has been made by Bassanezi and 

Roman-Flores [1] while lots of other fuzzy 

[8], Parkash [14], Bhandari and Pal [2], Parkash, Sharma and Mahajan [16, 17], Li and Liu [11], Osman, 

Abdel-Fadel, El-Sersy and Ibraheem [13] etc.
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Parkash and Sharma [15] shaped several measures of fuzzy entropy, obtained some interaction among these 

measures and applied them to an assortment of disciplines. 

On the other hand, Bhandari and Pal [2] profiled the following distance model between two fuzzy sets and 

it corresponds to Kullback and Liebler’s [10] divergence model: 
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Kapur [8] has outlined countless fascinating mathematical expressions of fuzzy entropic models 

corresponding to Kapur’s [7] probabilistic models. Countless other developments regarding the revision of 

divergence models for fuzzy distributions has been made by Kapur [8], Parkash [14], 

Ebrahimzadeh [12], Kobza [9] etc. 

To generate new entropic models, we reflect on the following function: 

handed to shape a fuzzy entropic model on behalf of each divergence model.

bilities can be taken as follows: 

 D 
a (A: F)  

 
 

   

D(A:F)   
 

  
 

 - e- D( C:F ) 
 

  
 

H 5 ( A )log DC : F

D A:F

 

A quantity of efforts related with the continuity of fuzzy entropic models has been made by Bassanezi and 

Flores [1] while lots of other fuzzy models have been originated by De Luca

[8], Parkash [14], Bhandari and Pal [2], Parkash, Sharma and Mahajan [16, 17], Li and Liu [11], Osman, 
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Parkash and Sharma [15] shaped several measures of fuzzy entropy, obtained some interaction among these 

On the other hand, Bhandari and Pal [2] profiled the following distance model between two fuzzy sets and 
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Kapur [8] has outlined countless fascinating mathematical expressions of fuzzy entropic models 

corresponding to Kapur’s [7] probabilistic models. Countless other developments regarding the revision of 

by Kapur [8], Parkash [14], Joshi and Kumar [5, 
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2. DEVELOPMENT OF MEASURES OF FUZZY ENTROPY
 

Taking into consideration the functions proposed above, we derive the following fuzzy entropic model:
 

(a) Measures of fuzzy entropy based on Bhandari and Pal’s [2] model:
 
The divergence model analogous to Bhandari 

and Pal’s [2] and is given by 
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(i) Using (2.1), the relation (1.6) gives

HA= D(C:F)D( 
1 

 n 

 = n log 2 A
 i1 

  
  
  

  

 

= H( A ) which is fuzzy entropic model outlined by De Luca and Termini [3].
 

(ii) Using (2.1), the relation (1.7) gives
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It can be proved that the expression obtained above verifies each and

taken a new fuzzy entropic model.
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H 
 (A) e 

n log  2 -e 
(- 

3   
       

 
which can be taken as a new fuzzy entropic model.
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which is fuzzy entropic model outlined by De Luca and Termini [3]. 
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which can be taken as a new fuzzy entropic model. 
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(c) Measures of fuzzy entropy based on Kapur’s [8] directed divergence:
 

The fuzzy divergence corresponding to Renyi’s [18] divergence was provided 
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taken as a new model of fuzzy entropy.

 
(ii) Using (2.3), the relation (1.7) gives

 
      

   
 H 

 (A) n log 2
2    

  

1 
   

        
        
    

n log 2 
 

    a 
   =   
         
         

        

Thus 2 H( A ) is a new model of fuzzy entropy.  
   

( A ) e 

  
log 2 n 

e 
     

 

H 
 

1  

3  
   

     
        

     n     
   

= 2 1  e log 2    
       

 

which is again a new model of fuzzy entropy.
 

(iv) Using (2.3), the relation (1.9) gives
 

n  

4 H ( A ) 2
n

 e
H

A 2


1  which can be taken as new model of fuzzy entropy. 
 
 

(v) Using (2.3), the relation (1.10) gives
 

5 H ( A ) log
   
 

1    

(c) Measures of fuzzy entropy based on Kapur’s [8] directed divergence: 

The fuzzy divergence corresponding to Renyi’s [18] divergence was provided 

          

log  (x ) 1 (x )(1   (x ))
 (1  (x

B A B  i  i  i  i 

           

(i) Using (2.3), the relation (1.6) gives 

1 n 
 

1 
log 

 

i1 
 

 

log 2 H

 
 

2 
 
 

 
 

 
 
1



A 

 

 
 A 
 

 

= 

 
 

 

  (x )  (1  (x ))   

 

A 

 
 

  i     i    
 

n log 2 
 H 

 A 
   

 

 1
     

 

       
 

        
  

 

is fuzzy entropic model matching to Renyi’s [18] model. Thus can be 

taken as a new model of fuzzy entropy. 

(ii) Using (2.3), the relation (1.7) gives 
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is a new model of fuzzy entropy. 
 

 

(iii) Using (2.3), the relation (1.8) gives 
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which is again a new model of fuzzy entropy. 

(iv) Using (2.3), the relation (1.9) gives 

which can be taken as new model of fuzzy entropy. 

(1.10) gives 
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The fuzzy divergence corresponding to Renyi’s [18] divergence was provided by Kapur [8] and is given by 
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(vi) Using (2.3), the relation (1.11) gives
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(vi) Using (2.3), the relation (1.11) gives 
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which is again a new fuzzy entropic model. 
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